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 Multi-constituent data assimilation during KORUS-AQ showed that emissions in South21 

Korea were 0.42 TgN for NOx and 1.1 TgCO for CO22 

 These emissions were 40% and 83% higher, respectively, than the a priori bottom-up23 

inventories, and increased ozone by up to 7.5±1.6 ppbv24 

 Mean ozone concentration was persistently higher over Seoul  (75.1±7.6 ppbv) than the25 

broader KORUS-AQ domain (70.5±9.2 ppbv) at 700 hPa26 
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Abstract 

Global multi-constituent concentration and emission fields obtained from the assimilation of the 

satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from OMI, GOME-2, MOPITT, MLS, 

and AIRS/OMI are used to understand the processes controlling air pollution during the Korea 

U.S.-Air Quality (KORUS-AQ) campaign. Estimated emissions in South Korea were 0.42 TgN 
for NOx and 1.1 TgCO for CO, which were 40% and 83% higher, respectively, than the a priori 
bottom-up inventories, and increased mean ozone concentration by up to 7.5±1.6 ppbv. The 
observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it 
was approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical 
reanalysis showed that mean ozone concentration was persistently higher over Seoul (75.10±7.6 
ppbv) than the broader KORUS-AQ domain (70.5±9.2 ppbv) at 700 hPa. Large bias reductions 
(>75%) in the free tropospheric OH show that multiple-species assimilation is critical for 
balanced tropospheric chemistry analysis and emissions. The assimilation performance was 
dependent on the particular phase. While the evaluation of data assimilation fields shows an 
improved agreement with aircraft measurements in ozone (to less than 5 ppbv biases), CO, NO2, 
SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was largest at stagnant 
conditions, whereas the model errors were mostly removed by data assimilation under dynamic 
weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error 
reductions, especially under dynamic weather conditions. Our results show the important balance 
of dynamics and emissions both on pollution and the chemical assimilation system performance.

1 Introduction 

With rapid economic development, air quality in East Asia has become increasingly 

important over recent decades (Akimoto, 2003; Liu et al., 2017; van der A et al., 2017). 

Tropospheric gases such as ozone, nitrogen oxides (NOx = NO2 + NO), and carbon monoxide 

(CO) play an important role in air quality, tropospheric chemistry, and climate. Tropospheric 

ozone is the third most important greenhouse gas in the atmosphere (Bowman et al., 2013; 

Myhre et al., 2013; Stevenson et al., 2013); it is formed from the secondary photochemical 

production of ozone precursors including hydrocarbons or CO in the presence of NOx, while it is 

removed by processes such as in-situ chemical loss and deposition to the ground surface. 

Tropospheric NOx concentrations are highly variable in both space and time, reflecting its short 

chemical lifetime in the atmosphere and the heterogeneous distribution of its sources and sinks. 

NOx emission sources are important in determining the atmospheric amount and distribution of 

NOx and other air pollutants. However, bottom-up inventories from different sources and regions 

contain large uncertainties, which result from inaccurate emission factors and activity rates for 

each source category (Castellanos et al., 2014; Vinken et al., 2014; Oikawa et al., 2015). 

Satellite-retrieved measurements have great potential for evaluating global and regional 

distributions of air pollutants, including their emissions. Global tropospheric ozone fields have 65 



been retrieved from the Tropospheric Emission Spectrometer (TES; Herman and Kulawik, 2013) 66 

and the Infrared Atmospheric Sounding Interferometer (IASI; Clerbaux et al., 2009). 67 

Tropospheric NO2 columns have been measured from the Global Ozone Monitoring Experiment 68 

(GOME; Richter and Burrows, 2002), the Scanning Imaging Absorption Spectrometer for 69 

Atmospheric Chartography (SCIAMACHY; Bovensmann et al., 1999), GOME-2 (Callies et al., 70 

2000), and the Ozone Monitoring Instrument (OMI; Levelt et al., 2006; Levelt et al., 2018). 71 

Carbon monoxide distributions have been retrieved from IASI (George et al., 2009) and from 72 

Measurements of Pollution in the Troposphere (MOPITT; Deeter et al., 2017). These satellite 73 

measurements have shown rapid changes in air pollutant emissions over Asia, such as increases 74 

in NOx emissions between 2005 and 2010 and a rapid reduction after 2011 in China (Liu et al., 75 

2017; Miyazaki et al., 2017; Qu et al., 2017), decreasing CO emissions from the United States 76 

and China between 2001 and 2015 (Jiang et al., 2017), and a rapid SO2 emission decrease since 77 

2007 for China (Wang et al., 2015; Li et al., 2017). These changes in Asia are of importance for 78 

air quality and health problems on both regional and global scales (Wang and Hao, 2012; 79 

Verstraeten, et al., 2015). The satellite measurements have also been used to validate bottom-up 80 

inventories (Kim et al., 2013; Mijling et al., 2013) and study transboundary influences (Lee et 81 

al., 2013) over South Korea. 82 

Data assimilation techniques have been used to propagate observational information in 83 

time and space, from a limited number of observed species to a wide range of chemical 84 

components that are physically and chemically consistent within the precision of individual 85 

observations (Lahoz and Schneider, 2014; Bocquet et al., 2015). Various studies have 86 

demonstrated the capability of data assimilation techniques in the analysis of chemical species in 87 

the troposphere and stratosphere (e.g., Parrington et al., 2009; Flemming et al., 2011 2017; 88 

Inness et al., 2013; Miyazaki et al., 2012a, 2012b, 2014, 2015, 2017; Gaubert et al., 2016). 89 

Miyazaki et al. (2012b) developed a system to simultaneously optimize concentrations and 90 

emissions of various species from assimilation of multi-constituent measurements from multiple 91 

satellite sensors. Chemical reanalysis using the ensemble Kalman filter (EnKF) has been used to 92 

provide comprehensive information on atmospheric composition variability and to elucidate 93 

variations in precursor emissions (Miyazaki et al., 2015, 2017a; Ding et al., 2017; Jiang et al., 94 

2018). It has also been used to validate chemistry-climate model simulations (Miyazaki and 95 

Bowman, 2017). The chemical reanalysis performance has been evaluated using independent 96 

satellite measurements and aircraft measurements for various regions (Miyazaki et al., 2015), but 97 

not yet specifically for East Asia because of the lack of intensive validation data. It makes the 98 

potential of chemical reanalysis in East Asia unclear for studying the local atmospheric 99 

environment and its impacts on the global air quality and climate.  100 

During the Korea U.S.-Air Quality (KORUS-AQ) campaign of May–June 2016, aircraft, 101 

ground-based, and ozonesonde observations were conducted around the Korean Peninsula by the 102 

National Aeronautics and Space Administration (NASA) and the National Institute of 103 

Environmental Research (NIER). These measurements provide a great opportunity to evaluate 104 



multiple satellite data assimilation in East Asia. In this study, we use KORUS-AQ measurements 105 

to evaluate the performance and efficiency of multi-constituent satellite data assimilation for 106 

varying meteorological conditions, and to provide comprehensive tropospheric chemical 107 

reanalysis of multi-constituent concentration and emission fields to understand the processes 108 

controlling variations in air pollution. 109 

2 Methodology 110 

2.1 Observations during KORUS-AQ 111 

The KORUS-AQ campaign was conducted by NASA and NIER from 1 May to 14 June 112 

2016 over the Korean peninsula. The campaign aimed to implement an integrated observation 113 

system for improved understanding of air quality. These observations included three aircrafts 114 

(NASA DC-8, NASA B200, Hanseo University King Air), ground in-situ measurements, remote 115 

sensing measurements by AERONET, Pandora and LIDAR observations, and several satellite 116 

measurements. This campaign has several characteristics. First, Korea’s urban/rural sectors are 117 

distinct, providing an attractive setting for understanding the relative importance of human and 118 

natural emissions. Second, the Korean peninsula and its surrounding waters provide an 119 

advantageous experimental setting for distinguishing local and trans-boundary pollution. Third, 120 

Korea is located in a region of rapid economic and social change, with strong air quality 121 

gradients both in time and space.  122 

We used DC-8 aircraft measurements (23 flights) and ozonesonde measurements over 123 

Taehwa (42 profiles, located in a forest area near Seoul) and Olympic Park (20 profiles, located 124 

in an urban area of Seoul). Some of the DC-8 flight track information is provided by Tang et al. 125 

(2018). 60-second merge R4 data of various species measurements on board DC-8 were used: 126 

ozone, NO2, and NO obtained using 4-channel chemiluminescence instrument (Weinheimer et 127 

al., 1993); NO2 using Thermal-Dissociation Laser Induced Fluorescence (TD-LIF; Thornton et 128 

al., 2000); OH and HO2 concentrations using Laser Induced Fluorescence; OH reactivity with 129 

discharge flow (Brune et al., 1995); CO using Differential Absorption Carbon Monoxide 130 

Measurements (DACOM; Warner et al., 2010); CH2O using Compact Atmospheric Multispecies 131 

Spectrometer (CAMS; Weibring et al., 2007); PAN and SO2 using the chemical ionization mass 132 

spectrometer (CIMS; Huey et al., 2007); and  HNO3 using single mass analyzer CIMS (S-CIMS; 133 

Crounse et al., 2006). 134 

For comparisons with aircraft and ozonesonde observations, all observed profiles were 135 

binned on a common pressure grid with an interval of 30 hPa and mapped with a horizontal 136 

resolution of 0.5°×0.5°. The reanalysis and model fields were linearly interpolated to the time 137 

and location of each measurement using two-hourly output data and then binned on the common 138 

pressure grid and horizontal resolution. The validation using DC-8 measurements was conducted 139 

both inside and outside the Seoul Metropolitan area (SMA, defined as 36.6°N–37.9°N, 126.4°E–140 



127.6°E in this study) to discuss the model/data assimilation performance for different chemical 141 

regimes.   142 

2.2 Chemical data assimilation system 143 

The data assimilation system used was constructed based on a global CTM and an EnKF. 144 

The data assimilation framework is described in Miyazaki et al. (2017); however, some updates 145 

have been applied in this study including horizontal resolution (from 2.8°×2.8° to 1.1°×1.1°), 146 

assimilated measurements, and data assimilation setting. Here we provide a brief description of 147 

the updated data assimilation system. 148 

2.2.1 Forecast model 149 

The forecast model used is MIROC-Chem (Watanabe et al., 2011), which considers 150 

detailed photochemistry in the troposphere and stratosphere. The chemistry component of the 151 

model, which is based on CHASER-V4.0, calculates the concentrations of 92 chemical species 152 

and 262 chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). Its 153 

tropospheric chemistry considers the fundamental chemical cycle of Ox–NOx–HOx–CH4–CO 154 

along with oxidation of non-methane volatile organic compounds (NMVOCs). Its stratospheric 155 

chemistry simulates chlorine and bromine containing compounds, CFCs, HFCs, OCS, N2O, and 156 

the formation of polar stratospheric clouds (PSCs) and heterogeneous reactions on PSC surfaces. 157 

More details on the CHASER chemistry module can be found in Morgenstern et al. (2017). In 158 

the framework of MIROC-Chem, CHASER is coupled to the atmospheric general circulation 159 

model MIROC-AGCM version 4 (Watanabe et al., 2011). The meteorological fields simulated 160 

by MIROC-AGCM were nudged toward the six-hourly ERA-Interim (Dee et al., 2011). The 161 

emission data used are described in Section 2.3. 162 

The model used has a T106 horizontal resolution (1.1°×1.1°) with 32 vertical levels from 163 

the surface to 4.4 hPa. The T106 model has approximately 2.6 times higher horizontal resolution 164 

(6.25 times smaller grid cell size) than the model used in our previous data assimilation 165 

(T42=2.8°×2.8°). Sekiya et al. (2017) demonstrated that increasing model resolution from T42 to 166 

T106 significantly improves the tropospheric NO2 simulations, with reductions in regional mean 167 

model biases (RMSEs) for the annual mean tropospheric NO2 column by 90% (32%) over 168 

eastern China. The increase in model resolution can be expected to improve the representation of 169 

spatial variations including those between inside and outside the SMA. 170 

2.2.2 Data assimilation method 171 

Data assimilation was based upon an EnKF approach (Hunt et al., 2007). The EnKF uses 172 

an ensemble forecast to estimate the background error covariance matrix and generates an 173 

analysis ensemble mean and covariance that satisfy the Kalman filter equations for linear 174 

models. In the forecast step, a background ensemble, x
b

i (i=1,...,k), is obtained from the evolution 175 
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of an ensemble model forecast, where x represents the model variable, b is the background state, 

and k is the ensemble size (i.e., 32 in this study). The background ensemble is converted into the 

observation space, y
b

i=H(x
b

i), using the observation operator H, which is composed of a spatial 
interpolation operator and a satellite retrieval operator. The satellite retrieval operator can be 

derived from an a priori profile and an averaging kernel of individual measurements (e.g., Eskes 

and Boersma, 2003; Jones et al., 2003). Using the covariance matrices of observation and 

background error as estimated from ensemble model forecasts, the data assimilation determines 

the relative weights given to the observation and the background, and then transforms a 

background ensemble into an analysis ensemble, x
a
i (i=1,...,k). The new background error 

covariance is obtained from an ensemble forecast with the updated analysis ensemble. 

The emission estimation is based on a state augmentation technique. In this approach, 

background error correlations determine the relationship between the concentrations and 

emissions of related species for each grid point. The state vector includes surface emissions of 

NOx, CO, and SO2 and lightning NOx sources, as well as the concentrations of 35 chemical 

species. Owing to the simultaneous assimilation of multiple-species data and because of the 

simultaneous optimization of concentrations and emission fields, the global distribution of 

various reactive gases, including OH, is modified considerably in our system. The changes in 

various species, especially in OH, propagate the observational information between various 

species and modulates the chemical lifetimes of many species and improves emission estimates 

(Miyazaki et al., 2012b, 2015, 2017; Miyazaki and Eskes, 2013). The OMI and GOME-2 NO2 

measurements obtained at different overpass times (c.f., Section 2.2.3) were used to optimize the 

diurnal NOx emission variability, following the method of Miyazaki et al. (2017). 

Covariance inflation was applied to analyses of both concentrations and emissions to 

prevent an underestimation of background error covariance and filter divergence caused by 

sampling errors associated with the limited ensemble size and by model errors, as used in 

Miyazaki et al. (2015). A constant multiplication inflation factor (8 %) was applied to inflate the 

forecast error covariance at each analysis step. We also applied conditional covariance inflation 

to the emission factors to prevent covariance underestimation caused by the application of a 

persistent forecast model and to maintain emission variability, by inflating the spread to a 

minimum predefined value (i.e. 30% of the initial standard deviation) at each analysis step. The 

initial standard deviation was set to be 40% for surface emissions of NOx, CO, and SO2. We 

obtained the optimal value of 40 % from sensitivity experiments, to achieve the best agreements 

with the assimilated measurements and improve the data assimilation statistics; however, this 

was done using a 2.8°×2.8° resolution system (Miyazaki et al, 2012b). 

To improve data assimilation performance and stability, a covariance localization is 

applied to neglect the covariance among unrelated or weakly related variables, which has the 

effect of removing the influence of spurious correlations resulting from the limited ensemble 

size, as described in Miyazaki et al. (2015). The localization is also applied to avoid the 213 



influence of remote observations that may cause sampling errors, with the cut-off radius of 1643 214 

km for NOx emissions and 2019 km for CO emissions, lightning sources and chemical 215 

concentrations. 216 

Because of the increased horizontal model resolution from 2.8°×2.8° to 1.1°×1.1°, the 217 

data assimilation analysis suffers more from errors related to the sampling of the background 218 

covariance, due to the increased degrees of freedom in the state vector. Increasing the ensemble 219 

size from 32 to 64 in the assimilation improved the performance somewhat. For comparisons we 220 

employed 32 members, as was done in the latest decadal chemical reanalysis calculation. 221 

Although a strong covariance localization was applied to reduce spurious long-range correlations 222 

(c.f., Section 2.2.2), further investigations on the optimal localization length, inflation factor, 223 

ensemble size, and other data assimilation settings at different model resolutions would be 224 

required. 225 

2.2.3 Assimilated measurements 226 

Assimilated observations were obtained from multiple satellite measurements, as listed 227 

below. 228 

 OMI and GOME-2 NO2229 

Tropospheric NO2 column retrievals used were the QA4ECV version 1.1 level 2 (L2) 230 

product for OMI (Boersma et al., 2017a) and GOME-2 (Boersma et al., 2017b). Low-quality 231 

data were excluded following the recommendations (Boersma et al., 2017c), using the provided 232 

quality flag and information on solar zenith angle (<80° were used), cloud radiance fraction 233 

(<0.5), and air mass factor (tropospheric air mass factor/geometric air mass factor>0.2). We 234 

employed a super-observation approach to produce representative data with a horizontal 235 

resolution of the forecast model (1.1°×1.1°) for OMI and GOME-2 observations, following the 236 

approach of Miyazaki et al. (2012a). Super observations were generated by averaging all data 237 

located within a super-observation grid cell. Super-observation error was estimated using the 238 

provided retrieval uncertainty by considering an error correlation of 15 % among the individual 239 

satellite observations within a model grid cell and by considering representativeness error. The 240 

retrieval uncertainty of individual pixels was calculated based on error propagation in the 241 

retrieval, based on uncertainties in level-1 data and subsequent spectral fitting, and contributions 242 

from uncertainties in ancillary data (surface albedo, cloud properties) required to calculate the 243 

stratospheric NO2 background and the AMF. Uncertainties in the retrieval a-priori do not play a 244 

role because the averaging kernels are used. The detailed error characteristics and validation 245 

results of the OMI NO2 product is described by Boersma et al. (2004, 2018). 246 

 MLS ozone and HNO3247 



The Microwave Limb Sounder (MLS) data used were the version 4.2 ozone and HNO3 248 

L2 products (Livesey et al., 2011). We used MLS data for pressures of less than 215 hPa for 249 

ozone and 150 hPa for HNO3, while excluding tropical-cloud- induced outliers. The provided 250 

accuracy and precision of the measurement error were included as the diagonal element of the 251 

observation error covariance matrix.  252 

 MOPITT CO253 

The Measurement of Pollution in the Troposphere (MOPITT) total column CO data used 254 

were the version 7 L2 TIR/NIR product (Deeter et al., 2017). The version 7 data generally show 255 

smaller retrieval biases and reduced bias variability compared with earlier products, while the 256 

TIR-NIR product offers the greatest vertical resolution and the greatest sensitivity to CO in the 257 

lower troposphere. The total column averaging kernel was used in the observation operator to 258 

estimate simulated total columns. The estimated error, which consists of cumulative error from 259 

smoothing error, model parameter error, model error of the radiative transfer model, geophysical 260 

noise, and instrumental noise, was used in the observation error. The super-observation approach 261 

was also applied to MOPITT observations. 262 

 OMI SO2263 

The OMI SO2 data used were the planetary boundary layer (PBL) vertical column SO2 L2 264 

product produced with the principal component analysis (PCA) algorithm (Li et al., 2013; 265 

Krotkov et al., 2016). The data were produced using a constant air mass factor of 0.36. Only 266 

clear-sky OMI SO2 data (cloud radiance fraction less than 20%) with solar zenith angles less 267 

than 70° were used, while the first 10 and last 10 cross-track positions were excluded to limit the 268 

across-track pixels, following Fioletov et al. (2016, 2017). Because of the lack of information on 269 

observation error in the retrieval data set, the OMI SO2 error was set to be a constant value of 270 

0.25 DU, which is about half of the standard deviation of the retrieved columns over remote 271 

regions (Li et al., 2013). 272 

 AIRS/OMI ozone273 

We also assimilated observational data from the joint AIRS/OMI version 1 L2 ozone 274 

profile product (Fu et al., 2018) in sensitivity data assimilation calculations. The ozone profile 275 

retrievals were performed via applying the JPL MUlti-SpEctra, MUlti-SpEcies, Multi-Sensors 276 

(MUSES) algorithm to both AIRS and OMI level 1B (L1B) spectral radiances (Fu et al., 2018). 277 

The methodology, characteristics and validation of MUSES algorithm have been presented by Fu 278 

et al., (2013) for joint TES/OMI ozone retrievals and joint CrIS/TROPOMI carbon monoxide 279 

(CO) profiling (Fu et al., 2016), joint TES/MLS CO retrievals (Luo et al., 2013) and AIRS alone 280 

methane, HDO, H2O, and CO retrievals. The AIRS/OMI ozone profile product, containing both 281 

global survey (GS) and regional mapping (RE) mode data, are publicly available via Aura 282 

Validation Data Center (AVDC) website 283 
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(https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/TES/AIRS_OMI/O3). The GS mode 

AIRS/OMI data has been produced with a spatial sampling and the retrieval characteristics of 

ozone profiles equivalent to TES L2 standard data product, demonstrating the feasibility of 

extending the TES L2 data record via a multiple spectral retrieval approach, while the RE mode 

processes all available AIRS+OMI measurements over the Korean Peninsula. The GS retrievals 

show good agreements with WOUDC global ozonesonde measurements, with seasonal and 

global mean biases of -0.9–14.4 ppbv at 750 hPa, 2.2–5.9 ppbv at 510 hPa, and -7.7–2.9 ppbv at 

316 hPa (Fu et al., 2018). The retrieved ozone profile, a priori ozone profile, quality flag, 

averaging kernels, and the estimated uncertainty matrix for ozone profiles were used in data 

assimilation. 293 

2.3 Experimental settings 294 

We conducted several data assimilation (i.e., chemical reanalysis) calculations and a 295 

model simulation without any assimilation (i.e., control run). The data assimilation and model 296 

calculations were started from 1 April 2016, using an initial condition on 1 April obtained from a 297 

three-month spin-up model calculation. The comparison of validation results between the 298 

assimilation and model simulations were used to measure improvements by data assimilation. In 299 

the standard assimilation calculation, none of tropospheric ozone profiles were assimilated. This 300 

setting is different from our reanalysis calculation (Miyazaki et al., 2015) because of the lack of 301 

TES global survey data during the KORUS-AQ period. To measure the impact of assimilating 302 

tropospheric ozone profiles, we conducted sensitivity data assimilation calculations using the 303 

AIRS/OMI multispectral tropospheric ozone profile retrievals.  304 

The a priori values for surface emissions of NOx, CO, and SO2 were obtained from 305 

bottom-up emission inventories. Anthropogenic emissions of NOx, CO, and SO2 were obtained 306 

from the HTAP version 2 for 2010 (Janssens-Maenhout et al., 2015). The HTAP version 2 data 307 

was produced using nationally reported emissions combined with regional scientific inventories 308 

from the European Monitoring and Evaluation Programme (EMEP), Environmental Protection 309 

Agency (EPA), Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS), and 310 

Regional Emission Inventory in Asia (REAS). Emissions from biomass burning were based on 311 

the monthly Global Fire Emissions Database (GFED) version 4 (Randerson et al., 2018) for NOx 312 

and CO. Emissions from soils were based on monthly mean of the Global Emissions Inventory 313 

Activity (GEIA; Graedel et al., 1993) for NOx. Volcanic SO2 emissions were based on results 314 

from Andres and Kasgnoc (1998). Lightning NOx (LNOx) sources were calculated based on the 315 

Price and Rind (1992) scheme. For other compounds, emissions were taken from the HTAP 316 

version 2 and GFED version 4 emissions. 317 

Any biases in the assimilated satellite retrievals could degrade the data assimilation 318 

performance. However, we did not apply any bias correction to the assimilated measurements 319 

because of the difficulty in estimating the bias structure. 320 



321 

3 Evaluation results 322 

3.1 Ozone  323 

3.1.1 Mean profiles 324 

Figure 1 compares the mean vertical ozone profiles from the model simulation without 325 

any data assimilation, the chemical reanalysis, independent observations from DC-8 aircraft 326 

measurements, and the ozonesonde measurements over Taehwa and Olympic Park averaged over 327 

the KORUS-AQ period. The aircraft profiles were averaged over and outside of the SMA. The 328 

model generally underestimated mean ozone concentrations throughout the troposphere, except 329 

for the ozonesonde measurements over Olympic Park in the lower troposphere. The negative 330 

model bias in the lower troposphere is 5–10 ppbv over SMA and 10–16 ppbv over the area 331 

outside of the SMA relative to the DC-8 profiles, and 2–11 ppbv over Taehwa. The positive 332 

model bias over Olympic Park in the lower troposphere can be attributed to large disagreements 333 

between the observed low concentration (38–44 ppbv) and simulated high concentration 334 

(approximately 80 ppbv) for specific two flights on 2 and 5 June. In the free troposphere, the 335 

model shows a mean negative bias of 2–13 ppbv relative to the DC-8 profiles and up to 17 ppbv 336 

relative to the Taehwa ozonesonde profiles. Compared with biases against other measurements, 337 

the model bias is smaller for the Olympic park ozonesonde profiles (by up to 8 ppbv) at most 338 

altitudes of the free troposphere.  339 

Data assimilation largely reduced the mean model bias in the free troposphere to less than 340 

5 ppbv over SMA and 3 ppbv outside of the SMA relative to the DC-8 measurements, with a 341 

bias reduction of larger than 50% over SMA and 60% outside of the SMA. The mean bias 342 

became less than 4 ppbv after data assimilation over Taehwa in the free troposphere. Over 343 

Olympic Park, data assimilation led to positive biases of 2–10 ppbv in the free troposphere. Note 344 

that, when excluding the 2 June Olympic Park ozonesonde profile (when the observed 345 

concentrations were anomalously low: 44–66 ppbv below 800 hPa and 74–93 ppbv between 420 346 

and 300 hPa, which are about 35% lower near the surface and 17–30% lower between 950 and 347 

750 hPa than the mean observed concentrations averaged during the campaign over Olympic 348 

Park, with numerous erroneous data near the surface), the positive bias was greatly reduced. 349 

Compared with the aircraft measurements, the root-mean-square-error (RMSE) was also reduced 350 

by 6–45% over SMA and 13–37% outside of the SMA in the free troposphere. In the lower 351 

troposphere, the model negative bias was reduced by approximately 70% over SMA and 45% 352 

outside of the SMA relative to the DC-8 measurements and became nearly zero over Taehwa, 353 

whereas the RMSE was reduced by 10%–20% over SMA and 10%–27% outside of the SMA. 354 

The remaining large RMSE values are associated with the occurrence of filament structures in 355 

the observed individual profiles. The model vertical profiles appear to be insufficient to resolve 356 



these structures, while the assimilated measurements do not contain sufficient information to 357 

constrain this fine-scale variability. 358 

The remaining negative bias in the lower troposphere could be associated with 359 

underestimated ozone production by precursors. Assimilating additional observations could be 360 

required to further improve the near surface ozone analysis. Spatial gradients in urban chemistry 361 

are difficult to capture with a global analysis. For example, Na et al. (2005) suggested that near 362 

surface ozone is strongly VOC-limited over the SMA. VOC emission optimization through 363 

assimilation of formaldehyde measurements (e.g., Millet et al., 2008) in combination with NOx 364 

and ozone data assimilation could be important. Meanwhile, the representation of meteorological 365 

fields and chemical losses need to be carefully evaluated using observations. The simulated 366 

meteorological fields were nudged toward the meteorological reanalysis fields (i.e., ERA-367 

Interim) and should realistically represent the actual weather patterns. Nevertheless, the GCM 368 

performance could substantially influence the representation of detailed meteorological fields, 369 

e.g., in boundary layer height and cloud distribution, which could degrade the chemical data370 

assimilation performance. The spatial representativeness gaps between the measurements and371 

model (at 1.1°×1.1° resolution) could also contribute to the disagreement over the SMA.372 

Figure 2 compares the spatial distributions of mean ozone concentration from the DC-8 373 

measurements averaged over the campaign period. From the surface to 800 hPa, the observed 374 

mean concentrations were high (110–130 ppbv) over the Yellow Sea and were lowest over 375 

western Japan (approximately 45 ppbv). The observed concentrations over the Korean Peninsula 376 

varied from 72 ppbv to 85 ppbv, with enhancements around Seoul and Busan (80–85 ppbv). 377 

Between 800 and 500 hPa, the observed concentrations were high around the west coast of the 378 

peninsula (85–90 ppbv) and around Busan (90–100 ppbv). Between 500 and 100 hPa, the 379 

observed mean concentrations reached 80–110 ppbv, with relatively high concentrations around 380 

Seoul and western Japan. 381 

The model underestimated the regional mean concentration by approximately 14 ppbv 382 

between the surface and 800 hPa, 10 ppbv between 800 and 500 hPa, and 16 ppbv between 500 383 

and 100 hPa. The negative model biases were large over the Yellow Sea and the vicinity of the 384 

western coast in the lower troposphere (by up to 55 ppbv). The KORUS-AQ measurements over 385 

the Yellow Sea were designed to observe strong (sharp) transport of pollution plumes from 386 

China, whereas even at the improved T106, the horizontal model resolution is still considered too 387 

coarse to simulate the plume structure. Tang et al. (2018) noted that during the 25 May 2016 388 

flight, even forecasts using a grid spacing of 9 by 9 km were not able to capture the transport of 389 

enhanced CO and CO2 over the Yellow Sea, although the impact of using high resolution models 390 

for simulating the high ozone plume is not clear. Based on model calculations using the 391 

optimized emission (c.f., Section 5), we confirmed that rapid transport of polluted air from China 392 

through NOx emissions resulted in large enhancements of lower tropospheric ozone (30–50 393 

ppbv) over the Yellow Sea during the period (Fig. 3). Thus, model errors in local photochemical 394 
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production, precursor emissions in China, and transport processes at both synoptic and finer 

scales, in addition to the coarse horizontal and vertical resolution of the model, could all 

contribute to the large underestimation over the Yellow Sea. Also note that the assimilated 

measurements contain limited information to constrain lower tropospheric ozone over the remote 

areas. Over the Korean peninsula, the model negative bias was maximized around Busan 

between 800 hPa and 500 hPa, because of local sources such as industries and power plants 

emissions. 

Data assimilation largely reduced the model bias over the entire Korean peninsula 

throughout the troposphere and over the oceans, except over the Yellow sea below 800 hPa 

where most of the negative model bias remained. The regional mean model bias was reduced by 

64% between the surface and 800 hPa (to 6 ppbv), 86% between 800 and 500 hPa (to 1.5 ppbv), 

and 96% between 500 and 100 hPa (to 0.9 ppbv).  406 

3.1.2 Temporal variations 407 

Meteorological conditions varied significantly during the campaign. We divided the 408 

period into four phases based on dominant circulation patterns. Because the spatial coverage of 409 

the DC-8 measurements is limited and changed largely with time during the campaign, regional 410 

ozone distributions over East Asia for each phase cannot be obtained from the DC-8 411 

measurements. We thus used the chemical reanalysis to characterize the regional ozone 412 

distributions for all phases. Figure 4 shows the spatial distribution of ozone and horizontal wind 413 

in the lower troposphere (at 700 hPa) from the chemical reanalysis for each phase. During phase 414 

1 (1–16 May), when the synoptic weather system dynamically changed, the spatial and temporal 415 

variation of mean ozone concentration was weak. In phase 2 (17–22 May), when synoptic flow 416 

was weak, stagnant conditions led to strong enhancements of pollution over the Korean 417 

Peninsula. In phase 3 (25–31 May), when strong westerlies existed, polluted air was rapidly 418 

transported from China to Korea, causing extreme pollution (>78 ppbv) and bad visibility in 419 

South Korea. In phase 4 (1–6 June), a blocking pattern determined the large-scale ozone 420 

distribution over East Asia, leading to high ozone concentrations over the northern part of the 421 

Korean peninsula (>74 ppbv) and northern China (>77 ppbv). 422 

Figure 5 compares the mean vertical ozone profiles from the DC-8 for individual phases, 423 

averaged for six flights in phases 1, four flights in phase 2, four flights in phase 3, and three 424 

flights in phase 4. In phase 1, the observed concentration increased with height over the SMA, 425 

with a minimum concentration of approximately 60 ppbv near the surface. The vertical variation 426 

was small outside of the SMA. The observed mean concentration in the boundary layer exceeded 427 

90 ppbv in phases 2 and 3, whereas the mean concentration was almost constant in the free 428 

troposphere (75–85 ppbv). In phase 4, the observed concentration decreased from the surface 429 

(85–90 ppbv) to the middle troposphere (65 ppbv over the SMA and 75 ppbv outside of the 430 

SMA), with a sharp minimum around 600 hPa over the SMA.  431 



432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

The negative model bias in the lower troposphere was large during phases 2–4 (10–18 

ppbv over the SMA and up to 20 ppbv outside of the SMA), whereas it was less than 10 ppbv 

during phase 1 both over and outside of the SMA. The model bias in the free troposphere was 

largest during phase 2 both over and outside of the SMA (10–23 ppbv), while it was less than 8 

ppbv above 700 hPa during phase 4 over the SMA.  

Data assimilation largely reduced the model bias in the free troposphere throughout the 

campaign, whereas the data assimilation efficiency varied largely in the lower troposphere. Most 

of the lower tropospheric bias remained in phases 2 and 3 especially over the SMA. During these 

phases under stagnant and transboundary transport conditions, model errors in, for instance, local 

photochemical processes, precursor's emissions, and boundary layer mixing could prevent 

improvements in the current data assimilation framework. In contrast, during phases 1 and 4, 

when observed concentrations over the Korea peninsula were controlled by large scale variations, 

observational information was propagated efficiently in time and space, improving the data 

assimilation performance from the surface to the free troposphere. These results highlight that 

both model performance and data assimilation efficiency are strongly sensitive to meteorological 

conditions, even at same location and in the same season. Note that the choice of model 

resolution could influence the dependence of data assimilation efficiency on meteorological 

conditions. 449 

3.1.3 Evaluation of regional ozone using reanalysis 450 

Data assimilation analysis provides comprehensive information on the spatial and 451 

temporal variations in global ozone, which can be used to measure the representativeness of the 452 

DC-8 aircraft observations. As summarized in Table 1, at 700 hPa over the SMA, the mean453 

concentration averaged over the campaign period, according to chemical reanalysis, is 76.7±9.4454 

ppbv with the DC-8 aircraft sampling; this value is comparable to the value observed in complete455 

temporal and spatial sampling over the SMA (75.1±7.6 ppbv). The good agreement between the456 

two samplings demonstrates that the aircraft observations are representative of means over the457 

SMA. The standard deviation is largest for dynamic weather conditions (in phase 1) and it is458 

reduced by approximately 60 % in complete sampling.459 

In the KORUS-AQ domain, the mean ozone concentration obtained by aircraft sampling 460 

is 75.8±5.3 ppbv, which is approximately 5 ppbv higher than the average of the surrounding area 461 

(defined as 31.5°N–37.5°N, 123°E–132°E, corresponding to the area shown in Fig. 2) in 462 

complete sampling (70.5±9.2 ppbv), because the DC-8 aircraft flew mainly over highly polluted 463 

areas over the Korean peninsula. The difference in mean ozone concentration between the two 464 

samplings (6 ppb) as well as the standard deviation in complete sampling (8.7 ppb) are largest in 465 

phase 3 owing to strong latitudinal gradients of ozone associated with the rapid transport of 466 

polluted air from eastern China centered over northern South Korea. The difference between the 467 

two samplings at 900 hPa (not shown in the table) is 8 ppbv at the mean concentration of the 468 



campaign (77.1±12.2 ppbv in aircraft sampling and 69.1±10.5 ppbv in complete sampling), with 469 

large differences in phases 2–4 (7–11 ppbv). 470 

Temporal variation is also different between the two samplings for both the SMA and the 471 

KORUS-AQ domain. From phase 3 to 4, the mean ozone level decreased in aircraft sampling by 472 

approximately 2 ppbv, whereas it increased in complete sampling by 2.4 ppbv. These differences 473 

reveal that the aircraft measurements have limitations in representing the evolution of mean 474 

ozone fields associated with changes in meteorological conditions at both local and regional 475 

scales.  476 

The mean concentration of ozone over the East Asia domain (defined as 29°N–45°N, 477 

110°E–132°E, corresponding to the area shown in Fig. 4) in the complete sampling is 70.2±9.3 478 

ppbv (averaged over the campaign period), which is up to approximately 7 ppbv lower (in phase 479 

3) than that based on aircraft sampling. These results demonstrate that the DC-8 measurements480 

are not representative of monthly and regional means either over the KORUS-AQ domain or481 

over East Asia.482 

Discrepancies can occur between the estimates using actual aircraft data and the analysis 483 

fields because of the coarse model resolution. The standard deviation estimated along the DC-8 484 

flight tracks for each bin (with an interval of 30 hPa) was 20–90% larger in the actual aircraft 485 

data than in the data assimilation analysis, showing that the analysis represents only parts of the 486 

observed variability. Despite the large differences in the variability, we expect the mean 487 

concentrations to be similar because of the large number of aircraft samples over a wide area, 488 

except near the surface. Near the surface, evaluations using high resolution model/data 489 

assimilation fields would provide more useful estimates. 490 

3.1.4 Analysis uncertainty 491 

Important information regarding data assimilation performance is provided by the error 492 

covariance. Analysis spread is estimated as the standard deviation across the ensemble 493 

simulations, and it can be regarded as uncertainty of the analysis fields. It is caused by errors in 494 

the model input data, model processes, and errors in the assimilated measurements, and it is 495 

reduced if the analysis converges to a true state (e.g., Houtekamer and Mitchell, 2005; 496 

Houtekamer and Zhang, 2016).  497 

The analysis spread showed distinct variations in both time and space (Fig. 6). In phase 1, 498 

the analysis spread was relatively small (< 4 ppbv) over central and southern China, because of 499 

eastward transport of air with small spread from the central Eurasian continent. In phase 2, the 500 

spread was small within the anticyclone over northeastern China and Korean Peninsula. Within 501 

the high-pressure system, more observations are available due to the lack of clouds, and 502 

observational information can be accumulated effectively, with reduced influence of polluted air 503 

from China, which generally has a larger forecast spread. As a result, the analysis spread over the 504 
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SMA was decreased by approximately 30% from the phases 1 (3.8 ppbv) to 2 (2.8 ppbv). In 

phase 3, when polluted air was transported from China, the analysis spread over the SMA 

increased again to approximately 4.1 ppbv. In phase 4, both the analysis concentration and its 

spread increased over central China, whereas the spread over the Korean peninsula decreased to 

approximately 3.3 ppbv. 

The changes in the analysis spread suggest that the impact of data assimilation on the 

analysis, especially for direct ozone assimilation, will be sensitive to meteorological conditions. 

The small spread could lead to a small increment from ozone assimilation in phase 2. This 

suggests that accurate and dense observations of precursors could be more important than ozone 

measurements to improve ozone analysis for stagnant conditions. In contrast, phase 1 saw 

dynamic weather conditions (i.e., dynamically-varying weather conditions) and a relatively large 

spread over a wide area in East Asia; as a result, both local and remote measurements of ozone 

and precursors can be expected to be important to improve the regional ozone distribution.  

Overall, the analysis spread was smaller than the actual analysis and observation 

difference, with the largest discrepancy in phase 2 when the analysis spread was smallest (as 

described above) and the analysis-observation difference was large (c.f., Section 3.1.2). The 

mean value and standard deviation of the actual OmF evaluated using the DC-8 measurements in 

the lower troposphere (between 860 and 700 hPa) in May 2016 were 6.1±4.5ppb, in contrast with 

the estimated analysis spread of 3.9±1.1ppb. The small analysis spread could reflect the lack of 

effective observations for measuring analysis uncertainties and the stiff chemical system. The 

ozone analysis spread in the lower and middle troposphere was sensitive to the spread in surface 

NOx emissions when excluding direct ozone assimilation. These results indicate the need for 

additional observational information and/or stronger covariance inflation for forecasting error 

covariance and measuring analysis spread corresponding to actual analysis uncertainty. Note that 

the obtained ozone analysis spread was affected by the choice of inflation factor for NOx 

emissions to some extent (c.f., Sec. 2.2.2). The applied inflation factor was chosen to obtain the 

best agreement with the observed profiles of NO2 and ozone. 531 

3.2 Various reactive gases 532 

Figure 7 compares the mean vertical profiles of various reactive gases observed from 533 

DC-8 measurements averaged during the campaign over and outside of the SMA. The observed534 

mean boundary layer NO2 concentration is approximately 12 ppbv over the SMA and 1.6 ppbv535 

outside of the SMA. The model underestimates NO2 by 65% over the SMA and 40% outside of536 

the SMA. Data assimilation mostly removes the model negative bias and reproduced the537 

observed NO2 profile throughout the troposphere outside of the SMA, whereas the improvement538 

was small over the SMA. The remaining negative bias over the SMA suggests that model539 

processes, such as the diurnal cycle, boundary layer mixing and venting, the chemical lifetime of540 

NOx, and the chemical equilibrium state, may not be described well over the polluted area.541 



Meanwhile, the model resolution is not sufficient to resolve local enhancements of NO2 in such a 542 

small area. NO is underestimated by 88% over the SMA and by 70% outside of the SMA within 543 

the boundary layer by the model. Data assimilation reduced approximately 20% of the model 544 

negative bias outside of the SMA. The remaining NO error both over and outside of the SMA 545 

indicates a requirement to improve the NOx chemistry to better proportion of NO and NO2 546 

The model underestimates CO by up to 120 ppbv over the SMA and 70 ppbv outside of 547 

the SMA below approximately 800 hPa (Fig. 7), as commonly reported in the Copernicus 548 

Atmosphere Monitoring Service (CAMS) analysis for the same campaign (Tang et al., 2018) and 549 

in other global CTMs (e.g., Strode et al., 2016). This may reflect underestimated emissions and 550 

too short chemical lifetime of CO. Data assimilation removes most of the negative CO bias both 551 

over and outside of the SMA, because of the increased surface CO emissions (c.f., Sec. 4). 552 

The model largely overestimates SO2 below approximately 600 hPa by a factor of up to 553 

three both over and outside of the SMA. Data assimilation mostly removed the positive SO2 bias 554 

above approximately 800 hPa, because of the reduced surface emissions by OMI SO2 555 

measurements (c.f., Section 5). In the lower troposphere, however, data assimilation led to 556 

negative SO2 biases. This probably reflects errors in local emissions, model processes within the 557 

boundary layer, vertical transport between the lower and middle troposphere, and in the 558 

assimilated retrievals and setting (e.g., constant retrieval errors were assumed for OMI SO2). 559 

Further, the assimilated SO2 column measurements will have a reduced sensitivity near the 560 

surface compared to the free troposphere, but this effect was not considered in the observation 561 

operator because of the lack of information in the retrievals. The model underestimated PAN 562 

below approximately 850 hPa over the SMA and throughout the troposphere outside of the SMA, 563 

whereas data assimilation reduced the negative bias associated with the increased NO2.  564 

The model overestimates the mean OH concentration by up to a factor of two in the lower 565 

troposphere and underestimates it by up to 35% in the upper troposphere. The overestimation in 566 

the lower troposphere is smaller (by approximately 25%) outside of the SMA. The data 567 

assimilation increases OH above approximately 700 hPa, showing a closer agreement with the 568 

observed profiles with bias reductions of 75–95% in the middle and upper troposphere (between 569 

650–350 hPa), whereas the improvement is small in the lower troposphere. The increase in ozone 570 

increased OH throughout the free troposphere, while the increase in CO decreased OH in the 571 

lower troposphere. These adjustments led to a closer agreement with the observed OH profile 572 

outside of the SMA. As OH modulates the chemical lifetimes of many species and improves 573 

emission inversions (Miyazaki et al., 2012b, 2015, 2017), the significant improvements in OH 574 

confirm the usefulness of multiple-species assimilation in tropospheric chemistry analysis. 575 

Model errors remain in the analysis of some non-assimilated species; these include 576 

overestimations in HNO3, HO2 and H2O2 in the lower and middle troposphere both over and 577 

outside of the SMA, and underestimations in CH2O in the lower troposphere over the SMA. 578 
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HNO3 is removed from the troposphere by deposition processes, while the chemical production 

of HNO3 drives the observed increase in HNO3 toward the surface over polluted areas. The large 

positive bias in the simulated HNO3 could be caused by too weak depositions and/or too strong 

chemical productions. In addition, an underestimated formation of nitrate aerosol, due to the lack 

of formation with sea-salt particles and dust in the model, could be one of the causes of the 

overestimation of HNO3 in the lower troposphere. Further investigations, for instance, using in-

situ measurements of deposition and aerosol concentration would facilitate in improving the 

model performance.  

The model includes the heterogeneous HO2 loss by aerosols and cloud droplets. However, 

it assumes the final product of this HO2 reaction to be H2O2 not H2O. The absence of this loss 

process could lead to the overestimations in H2O2 and HO2, as suggested by Mao et al. (2013). 

Kanaya et al. (2006) and (2016) discussed that inclusion of this loss would reduce daytime 

maxima of HO2 and daytime net ozone production rate at Mt. Tai, in the center of the North 

China Plain and at Fukue Island, near Korea, respectively.  

A lack of direct observational constraints limits improvements on these species. For 

instance, the assimilated satellite measurements contain limited information to reduce model 

errors due to fast chemistry such as model processes that determine the NO2/NO ratio. The 

remaining model errors prevent the data assimilation improvement, e.g., in NO in the boundary 

layer, both over and outside of the SMA. Further, model errors in transient transport processes, 

e.g., owing to convection and boundary layer mixing, and in PBL mixing may yield errors in the 
NO profiles because the NO2/NO ratio changes with height. The remaining errors after data 
assimilation are generally larger over the SMA than outside the SMA for several species (CO, 
SO2, NO2, NO, PAN, and OH). The spatial representativeness errors due to the limited resolution 
of the model could contribute to the disagreement over the SMA.

Any systematic error in the model processes will have a negative influence on the 

analysis including the emission estimates. For instance, the underestimation in SO2 within the 

boundary layer could suggest a possible overestimation of an atmospheric sink of SO2 in the 

model, which will result in an overestimation in estimated SO2 emissions. From model 

sensitivity calculations, simulated SO2 concentrations in the boundary layer were found to be 

sensitive to model parameters such as the heterogeneous reaction rate on dust surfaces. Changes 

in the chemical scheme are expected to affect the estimated sources. Similarly, an overestimate 

of NOx removal processes could lead to an overestimation in NOx emissions. Assimilating 

additional observations and adjusting more model parameters (e.g., VOC emissions, deposition, 

and/or chemical reactions rates) could be required to reduce model errors in these species and 

improve emissions estimates. 

Figure 8 compares the spatial distribution of the tropospheric NO2 column between the 

OMI measurements, model simulation, and data assimilation. The model overestimates high NO2 615 



columns over polluted areas in China and underestimates it over the Korean peninsula and the 616 

oceans. The area mean bias is −1.5×10
15

 molecules cm
-2

 (approximately 50% of the regional 617 

mean concentration) for South Korea and +1.7×10
15

 molecules cm
-2

 (approximately 75%) for 618 

eastern China. The a priori emissions were constructed for the year 2010. The simulation did not 619 

consider the influence of a rapid NOx emission reduction after 2010 for China that was reported 620 

by Miyazaki et al. (2017) and Liu et al. (2017). For South Korea, most of the top-down estimates 621 

revealed increases after 2010 (Ding et al., 2017). The use of the 2010 emissions, along with large 622 

uncertainty in emission factors, could explain a part of the overestimation over China and the 623 

underestimation over South Korea. Data assimilation increases tropospheric NO2 columns by 624 

approximately 1.4×10
15

 molecules cm
-2

 over South Korea and by 0.4–1.0×10
15

 molecules cm
-2

625 

over the oceans and decreases over most of eastern China (by 3.5×10
15

 molecules cm
-2

 over 626 

northeastern China and by 5×10
15

 molecules cm
-2

 around Hangzhou and Shanghai). As expected, 627 

data assimilation greatly improved the agreements with the assimilated OMI measurements, with 628 

a reduced regional mean bias from 0.07 to 0.02 ×10
15

 molecules cm
-2

and RMSE from 1.5 to 0.7 629 

×10
15

 molecules cm
-2

, and an increased spatial correlation from 0.86 to 0.93 for the monthly 630 

mean fields for East Asia (defined as 30–45°N, 90–130°E). The model negative bias was 631 

reduced by approximately 40% (from 4 to 2.6×10
15

 molecules cm
-2

) over Seoul and by 70% 632 

(from 1.4 to 0.4×10
15

 molecules cm
-2

) for the country-average concentration in South Korea. 633 

3.3 Impact of individual assimilated measurements 634 

To demonstrate the relative importance of individual assimilated measurements on the 635 

improvements in the ozone profile analysis, we conducted Observing System Experiments 636 

(OSEs), by separately assimilating individual measurements into the data assimilation system. 637 

The total averaged changes in ozone by the multiple-constituent data assimilation over South 638 

Korea reached approximately 10 ppbv in the lower troposphere and approximately 20 ppbv in 639 

the middle and upper troposphere (c.f., Section 3.1.1).  640 

As shown in Fig. 9, for the lower tropospheric ozone analysis, NOx emission 641 

optimization by OMI and GOME-2 NO2 data assimilation was most important. The NO2 impact 642 

generally increased with decreasing latitude over the East Asia domain because of greater ozone 643 

production efficiency by NOx and larger corrections made to regional NOx emissions at lower 644 

latitudes; meanwhile, the impact around the South Korea varies largely with meteorological 645 

conditions. At 700 hPa, the smaller contribution in phase 1 around South Korea is associated 646 

with weak influences of either Korean and Chinese emissions, whereas the large contributions in 647 

phases 2–4 are associated with enhanced ozone productions through local (in phases 2 and 4) and 648 

remote (in phase 3) emissions.  649 

The changes in NOx emissions increased mean ozone concentration by 5.3±0.6 ppbv 650 

(5.5±0.7 ppbv) in phase 1 and by 6.0–6.3±0.3–0.7 ppbv (6.1–6.2±0.3–0.9 ppbv) in phase 2–4 651 

over the SMA (over South Korea) at 700 hPa. Below 800 hPa over the SMA (figure not shown), 652 
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the NO2 assimilation explains most of the increase in mean ozone concentrations, except in the 

case of phase 4. The impact of NOx emission optimization on the boundary layer ozone (at 900 

hPa, figure not shown) reached 7.5±1.6 ppbv in phase 4 over South Korea at 900 hPa (in contrast 

to 4.9–6.2 ppbv in other phases). By assimilating all the measurements, the total ozone increase 

reached 10.8±3.8 ppbv in phase 2 and 10.7±3.2 ppbv in phase 4 at 700 hPa (in contrast to 7.8–

8.9 ppbv in other phases) and 12.0±2.0 ppbv in phase 4 at 900 hPa (in contrast to 2.8–7.2 ppbv in 

other phases) over the SMA. 

Fig. 10 compares the OSE results with the DC-8 aircraft measurements over SMA. The 

NO2 assimilation leads to large error reductions both at 700 and 400 hPa, mostly throughout the 

campaign period. Assimilation of stratospheric MLS ozone measurements provides additional 

important corrections to the middle and upper tropospheric ozone, with up to 10 ppbv positive 

increments over South Korea and other areas in East Asia. Assimilation of MOPITT CO data 

mostly increased mean ozone concentration by 1–4 ppbv across the troposphere. The MLS 

impact in the middle and upper troposphere is large in phase 2, with mean bias reductions 

relative to the DC-8 measurements of 35% at 700 hPa and 38% at 400 hPa. In contrast, the total 

adjustment is largely dominated by the NO2 assimilation throughout the troposphere in phase 3, 

reflecting the strong transport of polluted air from China, which reduces the mean bias by 45% at 

700 hPa and 54 % at 400 hPa. The MLS impact reaches to lower tropospheric levels, particularly 

in phase 4.  

These results demonstrate that the simultaneous optimization of concentration and 

emissions from multi-constituent data assimilation is an efficient method to correct the entire 

tropospheric ozone profile in East Asia and that the assimilation efficiency of individual 

measurements is dependent on the particular phase.  

4 Assimilation of AIRS/OMI tropospheric ozone profiles 

Here, we evaluate the impact of assimilating the AIRS/OMI multispectral tropospheric 

ozone profile analysis during the campaign. We conducted two additional data assimilation 

experiments: one assimilates only AIRS/OMI retrievals (AIRS/OMI DA), and the other 

assimilates the AIRS/OMI retrievals together with other assimilated retrievals used in the 

standard data assimilation calculation (Reanalysis+AIRS/OMI DA). Both the global (GL) and 

regional (RE for East Asia: 20–50°N, 80–130°E with denser spatial sampling) products were 

assimilated. The evaluation results at 510 hPa are depicted in Figure 11 and the statistics are 

summarized in Table 2. The model underestimated the monthly mean ozone concentrations by 

4–28 ppbv in the tropics and overestimated by up to about 20 ppbv in the southern mid-latitudes 

relative to the AIRS/OMI retrievals at 510 hPa. Even without assimilating the AIRS/OMI 

retrievals, the reanalysis showed closer agreement with the AIRS/OMI retrievals than the model 

simulation for both the global and regional products, with a zonal mean bias of 3.9 ppbv in the 

extratropics of both hemispheric and -1.8 ppbv in the tropics for GL, and 0.9 ppbv for RE at 510 689 
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hPa. These results suggest good performance of both reanalysis and AIRS/OMI retrievals. By 

assimilating AIRS/OMI retrievals (AIRS/OMI DA), the ozone analysis shows closer agreement 

with AIRS/OMI retrievals than the model and reanalysis for most cases, confirming the 

capability of the AIRS/OMI data product for use in data assimilation. The zonal mean bias 

(RMSE) was reduced by 77% (36%) in the NH extratropics, 57% (50%) in the tropics, and 97% 

(55%) in the southern hemisphere for GL, and 98% (43%) for RE at 510 hPa, compared with the 

model simulation results. Improvements can be found throughout the troposphere, with reduced 

improvements in the lower troposphere (i.e., at 750 hPa).  

As shown in Figure 12 (upper panels), the mean analysis spread is larger by up to 70% in 

all phases in AIRS/OMI DA than in the standard data assimilation calculation without any ozone 

assimilation (c.f., Fig. 6). The analysis spread is expected to decrease when effective 

observations are assimilated. In AIRS/OMI DA, the spread was mainly increased by the 

covariance inflation process in ozone data assimilation (c.f., Section 2.2.2). The analysis spread 

in the AIRS/OMI data assimilation (typically 6–8 ppbv over South Korea) provides better 

agreements with the actual analysis and observation difference (i.e., 6.1±4.5ppb for the lower 

troposphere) than that in the standard data assimilation calculation (3.9±1.2ppb), which can be 

regarded as a more realistic estimate of analysis uncertainty. Note that the applied covariance 

inflation factor was chosen to obtain the best agreement with the observed ozone profiles. 

The AIRS/OMI observation coverage and retrieval uncertainty were similar between 

different phases (except after 29 May when OMI went into survival model and ceased 

operation). However, the ozone analysis increments from AIRS/OMI assimilation varied 

substantially with meteorological conditions (lower panels in Fig. 12). The analysis increment 

was large over central and southern China in phase 1 and around the Korean peninsula in phase 

3. In phase 2, the small increment over East Asia corresponds to the small background spread. 
These results suggest that the data assimilation efficiency of both direct ozone measurements and 
precursor measurements (c.f., Section 3.1.4) varied greatly with meteorological conditions, 
associated with changes in the background error covariance.

The varying data assimilation efficiency can also be confirmed from evaluations using 

the DC-8 measurements. As shown by Fig 13, assimilation of AIRS/OMI data alone (AIRS/OMI 

DA) reduced the mean model bias with respect to the mean DC-8 ozone profiles in the middle 

troposphere by approximately 90% in phases 1 and 2 and by approximately 70% in phase 4. The 

bias reduction was smaller in phase 3 (by 35%), which is thought to be associated with the 

smaller spread and analysis increments in phase 2. With adding AIRS/OMI assimilation in the 

standard data assimilation calculation (Reanalysis+AIRS/OMI DA), the error reduction reaches 

larger than 80% in all phases, while providing improved error estimates similar to those in 

AIRS/OMI DA. As an exception, the error reduction became slightly smaller by adding 

AIRS/OMI assimilation in phase 3. The current AIRS/OMI data is only using a small fraction of 

the available observations. The impact of AIRS/OMI could become significantly greater when 727 



more data is processed. These results suggest that combining precursors’ emission optimization 728 

and direct ozone assimilation is an effective method to improve the tropospheric ozone profile 729 

analysis, independent from meteorological conditions.  730 

5 Estimated emission sources 731 

Figure 14 shows regional maps of surface emissions of NOx, CO, and SO2 estimated 732 

from data assimilation and the difference from a priori emissions (constructed based on HTAP-733 

version 2 inventories) averaged during May 2016. Data assimilation increases NOx emissions 734 

over some parts of urban East Asia, such as over Beijing (by 10%), around Shanghai (by 10%–735 

50%), Hong Kong (14%), Shenzhen (20%), Seoul (22%), and Busan (54%). The positive 736 

increments suggest underestimations in anthropogenic emissions in the inventories. In contrast, 737 

the increments are negative over central China (by 10%–50%). The complex spatial structure in 738 

the increments indicates large uncertainties in the emission inventories and different emission 739 

biases among cities. The use of the 2010 a priori emissions could also explain the spatial 740 

structure of the analysis increment. Over central China, large negative increments can be 741 

associated with recent emission reductions since 2011, as revealed by Miyazaki et al. (2017), Liu 742 

et al. (2017), and Qu et al. (2017). The large adjustments over South Korea could also be 743 

associated with large uncertainties in emission factor and activity used in the inventories (Kim et 744 

al., 2013).  745 

The CO emissions increased over most of China, with large increases in northwestern and 746 

southeastern China by 10%–40%. The overall increases can be attributed to emission 747 

underestimations in inventories and high bias in northern hemispheric OH, as discussed by 748 

Strode et al. (2016). Conversely, the decrease in CO emissions over central-eastern China could 749 

be associated with the reported decrease in emissions after 2010 (Jiang et al., 2017). The spatial 750 

pattern in NOx and CO emissions largely differed,  751 

The SO2 emissions decreased by 10%–90% over the entire East Asia domain, with large 752 

reductions observed over central and southwestern China. These variations are considered to be 753 

associated with the reductions in China’s total regional emissions after 2010, as reported by 754 

Koukouli et al. (2018), and large uncertainties in the inventories. The extent of reductions in SO2 755 

emissions was smaller over northwestern China. This could be associated with the exceptional 756 

positive trend in this region after 2010 (Ling et al., 2017). 757 

Table 3 summarizes the total regional emissions of NOx, CO, and SO2 for South Korea 758 

(125–129.5°E, 34.2–38.2°N) and eastern China (100–124°E, 21–43°N) obtained from several 759 

bottom-up inventories and estimated through top-down estimates approaches by using two 760 

different NO2 retrieval products from the QA4ECV version 1.1 (Boersma et al., 2017a, 2017b) 761 

and DOMINO version 2 (Boersma et al., 2004, 2011) for OMI and GOME-2 but the same 762 

observations of other trace gases. Bottom-up emissions were obtained from the HTAP version 2 763 
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for 2010 (Janssens-Maenhout et al., 2015), EDGAR version 4.3.2 for 2012 (Crippa et al., 2018), 

and KORUS-AQ version 2 inventories. The KORUS-AQ version 2 emissions were constructed 

based on the improved CAPSS (Clean Air Policy Support System) 2015 emissions for South 

Korea (Lee et al., 2011), and the Comprehensive Regional Emissions for Atmospheric Transport 

Experiment (CREATE) version 3 for China for 2015 using the SMOKE-Asia emission 

processing at 0.1° resolution (Woo et al., 2012). A top-down NOx estimation for 2016, based on 

the DECSO v5.1qa inversion using the OMI QA4ECV v1.1 NO2 products (Ding et al., 2018), 

and the v1 emission estimates for SO2 using the OMI SO2 BIRA products (Koukouli et al., 2018) 

for 2014 at 0.25° resolution were obtained through the GlobEmission project (van der A et al., 

2017).  

There are large differences between the NOx emission inventories for South Korea 

(0.30–0.43 TgN) and eastern China (6.2–8.3 TgN), as similarly discussed by Ding et al. (2017) 

for 2005–2015. In South Korea, the top-down emissions of NOx emissions estimated using 

QA4ECV is 0.42 TgN, which is about 40% higher than the KORUS v2 and HTAP v2 

inventories, but is equivalent to the EDGAR v4.3.2 inventories. Compared with the 

GlobEmission top-down estimate, the estimated NOx emissions were higher by 13%, which 

could be attributed to the coarser model resolution dilution effects and non-linear chemistry as 

well as differences in model chemistry. The top-down emission of NOx in eastern China is 

similar to the HTAP v2 emissions, while the spatial distribution is largely different (c.f., Fig. 14). 

When the DOMINO product is used instead of the QA4ECV product, the estimated NOx 

emissions for South Korea and eastern China are about 5% and 3%, respectively, lower. This 

reflects the updated retrievals including revised a priori profiles and improved uncertainty 

estimates. Although higher emissions are estimated by the QA4ECV product, the retrieved 

tropospheric columns are generally smaller for polluted areas, associated with the lower a prior 

column in the QA4ECV product and the use of the averaging kernel (Eskes and Boersma, 2003). 

Changes made to retrieval errors in the retrieval products could also be important for obtaining 

sufficient emission corrections when using the QA4ECV product, especially for highly polluted 

areas. Because of the improved error estimates in the QA4ECV product, we used the original 

retrieval error for both products in this study, unlike in our previous study (Miyazaki et al., 

2017), which reduced retrieval errors of individual NO2 retrievals by 30 % over polluted areas 

for the DOMINO product. 

The top-down CO emission for South Korea is 1.1 TgCO, which is 22% higher than the 

KORUS v2 emissions and 83% higher than the HTAP v2 emission. However, it is approximately 

40% of the EGDAR v4.3.2 emissions. The total CO emission in eastern China varies from 107.5 

TgCO (EDGAR v4.3.2) to 231.3 TgCO (HTAP v2) among the inventories; the top-down 

emission is approximately 19% higher (231.3 TgCO) than the a priori emissions (i.e., HTAP v2). 

The EDGAR v4.2 emission is more than 50% lower than the top-down estimate for eastern 

China. 801 
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The a posteriori estimates for total SO2 emissions in South Korea are approximately 40% 

lower than the HTAP v2 emissions and 73% lower than the KORUS-AQ v2 emissions. In 

eastern China, the a posterior estimates are 65% lower than the HTAP v2 emissions and 85% 

lower than the EGDAR v4.3.2 emissions. These results suggest large overestimations of SO2 

emissions in the bottom-up emission inventories. The overestimations could also be partly due to 

the recent rapid emission reduction (Li et al., 2017). However, since the a posteriori emission led 

to underestimations in the boundary layer SO2 concentrations with respect to the DC-8 

measurements (c.f., Fig. 7), the estimated emission in South Korea could be underestimated, 

associated with the large uncertainty (e.g., random noise of ~0.5 DU for remote areas, as 

described in Li et al (2013)) and the assumed constant retrieval errors and air mass factor 

because of lack of information in the assimilated OMI SO2 retrievals.  

The estimated NOx emissions were sensitive to forecast model resolution. The estimated 

NOx emissions became approximately 10% larger in coarser resolution (2.8°×2.8°) analyses than 

in fine resolution (1.1°×1.1°) analyses for South Korea, using the same data assimilation setting. 

Sekiya et al. (2017) demonstrated that coarser resolution models tend to underestimate the 

tropospheric NO2 column over polluted areas associated with dilution effects and non-linear 

chemistry. Further increases in model resolution could be crucial to obtain reasonable estimates 

for the highly polluted cases that are pronounced in East Asia, as discussed by Valin et al. (2011) 

and Sekiya et al. (2017).  

Using the optimized emission data sets, we conducted model sensitivity calculations to 

estimate the impact of precursors’ emissions from different regions on the ozone amount over 

Seoul. This will be presented in a separate companion study.  

6 Conclusions 

Comprehensive chemical reanalyses of multi-constituent concentration and emissions 

fields, provided by an assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, 

PAN, and SO2 from OMI, GOME-2, MOPITT, MLS, and AIRS, are used to understand the 

processes controlling variations in air pollution over East Asia during the KORUS-AQ campaign 

of May–June 2016. Various measurements obtained during the KORUS-AQ provide an 

opportunity to evaluate data assimilation performance and the value of existing satellite 

platforms to study air quality over East Asia. 

The evaluation of the data assimilation fields demonstrates the importance of multiple 

species satellite data assimilation and the simultaneous optimization of the concentration and 

emission fields. The analyzed ozone, CO, NO2, SO2, and OH profiles showed improved 

agreements with DC-8 aircraft measurements from the lower troposphere to the lower 

stratosphere. Corrections made to the precursors emissions (i.e., NOx and CO emissions) were 

important in reducing the lower and middle tropospheric model ozone bias, while direct 837 
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concentration adjustment by ozone measurements in the UTLS played important roles in 

correcting the middle and upper tropospheric ozone. The negative bias in OH was also largely 

reduced in the free troposphere because of the combined assimilation of multiple species, which 

played an important role in propagating observational information among various species and in 

modifying the chemical lifetimes of various reactive gases. We also tested the assimilation of 

AIRS/OMI multispectral retrievals of tropospheric ozone profiles. An additional bias reduction 

on the tropospheric ozone analysis, especially in the middle troposphere, was obtained by 

assimilating the multispectral retrievals, which was also important to obtain realistic estimates of 

the analysis uncertainty. 

Both the model performance and data assimilation efficiency were sensitive to 

meteorological conditions. The observed boundary layer ozone concentration over Seoul 

exceeded 90 ppbv for stagnant condition, but was 10–30 ppbv lower for dynamic weather 

conditions. Large reductions on the free tropospheric model bias by data assimilation were found 

throughout the campaign. In contrast, the lower tropospheric ozone bias was only slightly 

reduced for stagnant and transboundary transport conditions. During these phases, errors in local 

photochemical processes and precursor emissions could prevent improvements in the lower 

tropospheric ozone. In contrast, for dynamic weather conditions, observational information was 

propagated efficiently in time and space, improving the data assimilation performance 

throughout the troposphere. Assimilation of AIRS/OMI retrievals provided the largest 

corrections for dynamic weather conditions, whereas the improvement was limited just after 

stagnant conditions because of small background spread in the previous time period. However, 

expected increases in AIRS/OMI data density could further ameliorate the performance. Our 

analysis suggests that combining precursors’ emission optimization and direct ozone assimilation 

is an effective method to obtain sufficient corrections on ozone for any meteorological condition. 

To remove the influence of persistent model error and to further improve ozone analysis, 

adjusting additional model parameters, such as VOC emissions, deposition, and/or chemical 

reaction rates, and optimizing model error covariance could also be important. 

Estimated NOx emissions were 0.42 TgN in South Korea, which were 40%% higher as 

compared with the KORUS v2 and HTAP v2 inventories. The data assimilation result suggests 

an important underestimation of anthropogenic sources in emission inventories. Total CO 

emissions for South Korea from data assimilation are higher than the KORUS v2 by 22% and the 

HTAP v2 by 83 %, but it is 40% of the EGDAR v4.3.2 emissions. The updated emissions of 

NOx and CO increased mean ozone concentration by approximately 6 ppbv at 700 hPa over the 

SMA and South Korea and by up to 7.5±1.6 ppbv over South Korea within the boundary layer 

when a blocking pattern determined the large-scale ozone distribution. For SO2, estimated 

emissions are 40%–73% lower than the KORUS v2 and HTAP v2 inventories for South Korea 

and approximately 65% lower than the HTAP v2 emissions in eastern China. The optimized 

emissions can be expected to provide an accurate estimate of the source-receptor relationship, 875 



876 

877 

878 

879 

880 

881 

882 

883 

884 

885 

886 

887 

888 

889 

890 

891 

892 

893 

894 

895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

907 

908 

909 

910 

911 

 

such as the impact of precursors’ emissions from different regions on the ozone amount over 

Seoul. This will be presented in a separate companion paper (Miyazaki et al., to be submitted). 

Data assimilation analysis provides comprehensive information on the spatial and 

temporal variations of global ozone; in this study, it was also used to measure the 

representativeness of the DC-8 aircraft observations. Our investigation using reanalysis shows 

that the mean ozone concentration averaged during the campaign was persistently higher over 

the SMA (75.1±7.6 ppbv) than over the broader KORUS-AQ domain (70.5±9.2 ppbv), with the 

largest mean concentration (79.8±4.1 ppbv) over the SMA for stagnant conditions at 700 hPa. 

Our analysis also demonstrated that the DC-8 measurements provide concentrations that may be 

considered representative of the monthly mean over the SMA, but largely overestimate area 

mean concentrations of the KORUS-AQ domain by up to 6 ppbv in the lower troposphere. 

Although the assimilation of multi-constituent data provides comprehensive constraints 

on the entire chemical system and reduces the uncertainty on the emission estimates, the 

influences of model and observation errors remain a concern. Model performance is critical for 

the correct propagation of observational information between chemical species and to improve 

the emission estimation. Biases in the assimilated measurements may seriously degrade the data 

assimilation analysis including the emission estimation, as discussed in our previous studies 

(Miyazaki et al., 2012a; 2015; Miyazaki and Eskes, 2013). Application of a bias correction 

procedure for multiple measurements could improve the data assimilation performance. The 

relatively coarse model resolution (1.1°×1.1°) is insufficient to resolve local air pollution, which 

will limit improvements in the data assimilation in urban areas close to the surface. 

Chemical reanalysis data based on the EnKF approach also has the potential to provide 

information on long-term and regional variations of background ozone levels (Miyazaki et al., 

2015). Such detailed information on regional scale ozone variations cannot be obtained from any 

individual measurements. Our results also confirmed the great potential of advanced tropospheric 

ozone retrievals to improve tropospheric ozone profile analysis in combination with precursor 

emission optimization. In the future, assimilating datasets from a new constellation of LEO 

sounders (e.g., IASI, AIRS, CrIS, Sentinel-5P [TROPOMI], and Sentinel-5) and GEO satellites 

such as GEMS will provide more detailed knowledge of ozone and its precursors for East Asia 

(Bowman, 2013). 
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Figure 1. Comparison of mean vertical ozone profiles (in ppbv) between observations (black), 

model (blue), and reanalysis (red) averaged over the KORUS-AQ period. Top row shows mean 

profile; middle and bottom rows show mean difference and root-mean-square-error (RMSE) 

between model simulation and observations (blue) and between the reanalysis and the 

observations (red), respectively. From left to right, results are shown for DC-8 aircraft 

measurements over the Seoul Metropolitan Area (SMA), outside of the SMA, and ozonesonde 

measurements at Taehwa and Olympic Park. 

Figure 2. Spatial distribution of mean ozone concentrations (in ppbv) averaged over the 

campaign period from a DC-8 aircraft sampling between the surface and 800 hPa (top), 800 and 

500 hPa (middle), and 500 and 100 hPa (bottom). From left to right, results are shown for DC-8 

aircraft measurements, model, reanalysis, mean difference between the model and the 

observations, and mean difference between the reanalysis and the observations. The black square 

line represents the SMA region (defined as 36.6°N–37.9°N, 126.4°E–127.6°E in this study). 

Figure 3. Spatial distribution of ozone (in ppbv) at 850 hPa on May 25, 2016 from the reanalysis 

(left), and its changes due to Chinese NOx emissions (right). The impacts of Chinese NOx 

emissions were measured by comparing the results from a control model simulation (using the 

optimized emission from data assimilation) and sensitivity model simulations using modified 

NOx emissions where the emissions in China were set to zero. Vectors represent horizontal 

winds obtained from the GCM calculation nudged to ERA-Interim. 

Figure 4. Spatial distribution in mean ozone concentrations (in ppbv) from the reanalysis at 700 

hPa averaged during (a) 1–16 May 2016 (phase 1), (b) 17–22 May 2016 (phase 2), (c) 25–31 

May 2016 (phase 3), and (d) 1–6 June 2016 (phase 4). Vectors represent horizontal winds 

obtained from the GCM calculation nudged to ERA-Interim. 

Figure 5. Same as in Figure 1 but for DC-8 measurements over the SMA (top) and outside of the 

SMA (bottom) averaged during the individual phases (from left to right, phases 1 to 4). Error 

bars represent the standard deviation of all data within each bin. 

Figure 6. Spatial distribution of mean analysis spread (in ppbv, shaded) and mean ozone 

concentration (in ppbv, contour) from the reanalysis at 700 hPa averaged during the individual 

phases (from left to right, phases 1 to 4) for the reanalysis calculation. 

Figure 7. Comparison of mean vertical profile between observations (black), model (blue), and 

reanalysis (red) for CO (ppbv), HNO3 (ppbv), SO2 (ppbv), NO2 (pptv), NO (pptv), OH (pptv), 

H2O (ppbv), HO2 (pptv), CH2O (pptv), and PAN (pptv) averaged over the KORUS-AQ period. 

Results are shown for the profile (a) over and (b) outside of the SMA. 

Figure 8. Spatial distributions of tropospheric NO2 column (in 10
15

 molecules cm
-2

) from the 
QA4ECV OMI retrievals (upper left), model (upper center), and reanalysis (upper right). The 1343 



lower panels show the difference between the assimilation and model simulation (left), between 1344 

the model simulation and the satellite retrievals (center), and between the data assimilation and 1345 

the satellite retrievals (right). 1346 

Figure 9. Spatial distributions of differences in the mean ozone concentrations (in ppbv) 1347 

between the NO2 assimilation and model at 700 hPa averaged during individual phases.  1348 

Figure 10. Absolute values of mean ozone bias (ppbv) relative to the DC-8 aircraft 1349 

measurements over SMA for individual phases for the model calculation (blue), OMI and 1350 

GOME-2 NO2 assimilation (green), MOPITT CO data assimilation (orange), MLS O3 and HNO3 1351 

assimilation (purple), and reanalysis (red) at 400 hPa (upper panel) and 700 hPa (lower panel). 1352 

Figure 11. Comparison of mean ozone concentrations between the AIRS/OMI retrievals (left 1353 

columns), model (second left columns), reanalysis (third left columns), and AIRS/OMI 1354 

assimilation (right columns) at 510 hPa in May 2016. Upper row shows ozone concentrations for 1355 

the global product (GL), second row shows the difference between the model simulation or 1356 

assimilation and the satellite retrievals for GL; third row shows ozone concentrations for the 1357 

regional product (RE), bottom row shows the difference between the model simulation or 1358 

assimilation and the satellite retrievals for RE. 1359 

Figure 12. Spatial distribution of mean analysis spread (in ppbv, shading) and mean ozone 1360 

concentration (in ppbv, contours) from the reanalysis at 650 hPa averaged during individual 1361 

phases (from left to right, phases 1 to 3) for the AIRS/OMI data assimilation (upper panels). 1362 

Spatial distributions of ozone analysis increments (in ppbv/day) from AIRS/OMI data 1363 

assimilation are also shown (lower panels). Because the OMI went into survival model on May 1364 

29 and ceased operation afterwards during the KORUS-AQ period, the spread and increments in 1365 

phase 4 are not discussed. 1366 

Figure 13. Mean absolute values of ozone bias (in ppbv) relative to the DC-8 aircraft 1367 

measurements at 650 hPa for individual phases for the model calculation (blue), reanalysis (red), 1368 

AIRS/OMI data assimilation (green), and reanalysis with assimilating AIRS/OMI data (orange). 1369 

Figure 14. Spatial distributions of surface NOx emissions (in 10
11

 kgN m
-2

 s
-1

, upper panels),1370 

surface CO emissions (in 10
10

 kgCO m
-2

 s
-1

, middle panels), and surface SO2 emissions (in 10
10

1371 

kgS m
-2

 s
-1

, bottom row) obtained from a priori emissions (left panels), a posterior emissions1372 

from the reanalysis (center panels), and the difference between a posteriori and a priori emissions 1373 

(right panels) averaged over May 2016. The black square line represents the eastern China region 1374 

(100–124°E, 21–43°N) used for the emission analysis.  1375 
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Table 1. Mean values and standard deviations of ozone concentrations (in ppbv) based on data 

assimilation analyses averaged over the entire KORUS-AQ period and during individual phases. 

The results corresponding to the SMA, the KORUS-AQ domain (defined as 31.5°N–37.5°N, 

123°E–132°E), and the East Asia domain (defined as 29°N–45°N, 110°E–132°E) using the DC-8 

aircraft sampling and complete sampling 8-h daytime (9am to 5pm) mean chemical reanalysis 

fields at 700 hPa are shown. 

Table 2. Comparisons of mean ozone concentrations between the model simulation (Model), the 

standard data assimilation calculation (Reanalysis), and AIRS/OMI only data assimilation 

calculation (AIRS/OMI DA) in May 2016. Shown are the mean bias (BIAS: the data assimilation 

minus the satellite retrievals) and the root-mean-square error (RMSE) in ppbv. From left to right, 

results are shown for SH mid-latitudes (15–55°S), tropics (15°S–15°N), NH mid-latitudes (15–

55°N) for the global product (GL), and for the East Asia regional product (RE). 

Table 3. Regional total surface emissions of NOx (in Tg N yr
-1

), CO emissions (in Tg CO yr
-1

), 
and SO2 (Tg SO2 yr

-1
) from a priori and a posteriori emissions for South Korea (125–129.5°E, 

34.2–38.2°N) and eastern China (100–124°E, 21–43°N) in May 2016. The a posteriori NOx 

emissions were derived using two different satellite NO2 retrievals (QA4ECV and DOMINO2) 

in this study. The standard deviations of the estimated daily emissions during the analysis period 

are shown as the uncertainty information of the a posteriori emissions. The top-down estimates 

from the GlobEmission systems are also shown for NOx and SO2 emissions.  1395 

1396 
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Table 1. Mean values and standard deviations of ozone concentrations (in ppbv) based on data 
assimilation analyses averaged over the entire KORUS-AQ period and during individual phases. 
The results corresponding to the SMA, the KORUS-AQ domain (defined as 31.5°N–37.5°N, 
123°E–132°E), and the East Asia domain (defined as 29°N–45°N, 110°E–132°E) using the DC-8 
aircraft sampling and complete sampling 8-h daytime (9am to 5pm) mean chemical reanalysis 
fields at 700 hPa are shown.  

All period Phase 1 Phase 2 Phase 3 Phase 4 
SMA 
(aircraft) 76.7 9.4 75.0 13.7 78.9 5.9 77.3 8.0 75.5 2.9 

SMA 
(complete) 75.1 7.6 73.1 5.3 79.8 4.1 77.7 6.2 77.1 7.8 

KORUS-AQ area 
(aircraft) 75.8 5.3 74.6 6.5 77.7 6.2 76.0 4.3 73.9 2.9 

KORUS-AQ area 
(complete) 70.5 9.2 70.4 7.2 75.5 6.6 70.0 8.7 72.4 8.3 

East Asia 
(complete) 70.2 9.3 69.6 7.2 72.0 6.6 68.7 8.9 73.4 8.4 



Table 2. Comparisons of mean ozone concentrations between the model simulation (Model), the 
standard data assimilation calculation (Reanalysis), and AIRS/OMI only data assimilation 
calculation (AIRS/OMI DA) in May 2016. Shown are the mean bias (BIAS: the data assimilation 
minus the satellite retrievals) and the root-mean-square error (RMSE) in ppbv. From left to right, 
results are shown for SH mid-latitudes (15–55°S), tropics (15°S–15°N), NH mid-latitudes (15–
55°N) for the global product (GL), and for the East Asia regional product (RE). 

GL SH: 55 -15°S GL TR: 15°S-15°N GL NH: 15-55°N RE 

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 

316 
hPa 

Model 14.3 20.1 -2.8 8.3 13.5 27.6 6.7 26.0 

Reanalysis 6.7 9.9 5.7 8.7 4.4 17.9 0.2 19.8 

AIRS/OMI DA -0.2 7.6 -1.7 5.5 -3.3 15.8 -2.5 15.7 

510 
hPa 

Model 4.0 8.3 -12.2 14.4 -1.3 12.0 -5.2 14.5 

Reanalysis 3.9 6.0 -1.8 6.6 3.9 9.2 0.9 10.5 

AIRS/OMI DA 0.1 3.7 -5.3 7.2 0.3 7.7 0.1 8.3 

750 
hPa 

Model 0.3 4.3 -10.5 12.0 -3.0 8.2 -2.0 7.6 

Reanalysis 2.2 3.7 -3.1 6.0 3.9 7.6 4.8 6.8 

AIRS/OMI DA 0.3 2.8 -3.2 5.9 1.7 6.6 3.5 6.5 



Table 3. Regional total surface emissions of NOx (in Tg N yr-1), CO emissions (in Tg CO yr-1), 
and SO2 (Tg SO2 yr-1) from a priori and a posteriori emissions for South Korea (125–129.5°E, 
34.2–38.2°N) and eastern China (100–124°E, 21–43°N) in May 2016. The a posteriori NOx 
emissions were derived using two different satellite NO2 retrievals (QA4ECV and DOMINO2) 
in this study. The standard deviations of the estimated daily emissions during the analysis period 
are shown as the uncertainty information of the a posteriori emissions. The top-down estimates 
from the GlobEmission systems are also shown for NOx and SO2 emissions.  

South Korea Eastern China 

NOx CO SO2 NOx CO SO2 

HTAP v2 2010 0.30 0.6 0.12 7.6 194.6 12.8 

EDGAR v4.3.2 
2012 

0.43 2.6 0.8 8.2 107.5 29.8 

KORUS v2 30 0.9 0.26 - - - 

Top-down 
(QA4ECV) 

0.42 0.05 1.1±0.2 0.07±0.02 8.3±0.3 231.3±10.0 4.5±1.1 

Top-down 
(DOMINO2) 

0.39±0.05 - - 8.0±0.4 - - 

GlobEmission 0.37 6.2 20.9 




